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A technique is developed to model the multiple scattering of surface waves in an array 
of axisymmetric wave-energy devices. The matrix equation which results is inverted 
to yield the exciting forces, the added-damping and added-mass matrices, the optimal 
power absorption and the optimal device responses. The matrix method is also used 
on the previously unstudied problem of an unconstrained array. Finite-size effects of 
devices are shown to be important in producing phase-shifts, which shift the uncon- 
strained frequency response, but leave the opt,imal energy absorption virtually 
unchanged. 

1 Introduction 
Recently much effort in the field of wave power has been concentrated on the 

problem of the interactions between wave-energy devices in arrays. This interest is 
due partly to the fact that a practical wave-power station situated off the British 
coast might well consist of many individual devices uniformly spaced in a linear 
array. Partly, also, this research is driven by the knowledge that, when many bodies 
are placed together in a configuration, the power absorption per body may be sub- 
stantially different from that of the isolated units, due to hydrodynamic coupling 
between the bodies. Early work by Budal (1977)  demonstrated, by making many 
simplifying assumptions, that considerable enhancement of performance could result 
in linear arrays at  suitable spacing-to-wavelength ratio. More recently, Evans ( 1980) 
improved on the previous work and produced a full optimisation which showed that 
the interactions between array elements could be still more favourable. Both these 
theories are of general validity, but calculations from them were only performed for 
the case when the devices are ‘point absorbers’, so small that their scattering effect 
is negligible. This is because of the difficulty, in the general case, of determining the 
functions denoted by Evans asf,(O), by Budal as b,,(O), and here as ~ ~ ( 0 ) .  

An analysis that accounts properly for scattering is therefore needed. Also, both 
Evans and Budal were seeking optimum results, which implies that devices are linked 
operationally via some controller of phase and amplitude. This may well be impractical, 
and it is therefore necessary to know how amplitudes and phases of device motions 
adjust themselves, and thus what the true (non-optimal) energy absorption is. 

More recently Thomas & Evans (1981) have used the point-absorber theory to 
study arrays of heaving thin ships and semi-immersed spheres, with particular 
attention to the optimal body-displacement amplitudes. It was found that the 
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amplitudes for such devices were in general much larger than the wave height. Also, 
the maximum power was significantly reduced when the body amplitudes were 
constrained. It is therefore important to examine the optimal amplitudes as well as 
the optimal power; results presented in 3 7 for another device geometry show that the 
body amplitudes are not always excessive. 

The main effort of the present work is to take into account the scattering of waves 
between devices in an array, and this is also the goal of the work done by Count & 
Jefferys (1980) and Greenhow (1980). The former authors undertook a numerical 
study of the full hydrodynamic interaction between heaving axisymmetric buoys, 
using a boundary-element technique. This method is, in principle, more accurate 
than the present work, but becomes computationally prohibitive if more than a few 
devices are considered. Conversely, Greenhow (1 980) sought to investigate diffraction 
effects between N semi-immersed spheres in an array by considering N - 1 nearest- 
neighbour interactions; each of these is a two-body problem, in which only first- and 
second-order scattering are allowed. 

These last two papers illustrate certain ways in which the introduction of scattering 
can modify the properties of an array, and onc task of the present work is to try to verify 
their conclusions, and to gain an understanding of the reason for these modifications. 
The prototype problem considered here and in both these papers is that of two heaving 
spheres, with results presented for the damping coefficients and q-factor. Both papers 
show that the curve of the off-diagonal damping coefficient is shifted towards higher 
separation (this has to be deduced from figure 15 of Greenhow’s paper), but they dis- 
agree about the effect on the q-factor, when scattering is included, Count & Jefferys 
maintaining there is virtually no change. It is impossible to resolve this contradiction 
without a method that allows some insight into the interaction, and one object of the 
present ~7ork was to  aim for a method simple enough that insight was possible. It will 
be seen that some understanding has been achieved in certain aspects of the array 
problem when scattering is present, but there is still much that is not clear, and the 
hope is that further work will elucidate this. 

The method described here to investigat,e the actual performance of arrays, including 
multiple scattering, is a fairly flexible one. In  common with all the other array studies 
mentioned it is based on linearized water-wave theory; unlike other investigations it 
achieves substantial simplification by using a ‘ plane-wave ’ approximation which 
allows the multiple-scattering problem t o  be posed as a matrix equation. I n  this paper 
it is limited to uniformly spaced linear arrays of identical axisymmetric devices making 
heaving motions; this is purely for ease of application. It would be straightforward to 
consider unequal spacings, and it would also be possible to model in this way arrays 
that are not linear, although this would be more difficult if the number of devices was 
not small. (Triangular and rectangular arrays would prove interesting examples for 
study using this method.) The simplicity of the method relies largely on the restriction 
to axisymmetric bodies, and the heaving motions thereof, so a more complex technique 
is necessary to model more realistic devices. 

Work by Ohkusu (1973, 1974) also deals with the interactions of axisymmetric 
bodies, including multiple scattering. The method described in those papers is in 
principle more accurate than the one considered here (in that the plane-wave approxi- 
mation is not needed) but is computationally much less convenient when there are 
more than a few devices. Ohkusu applies the method to fixedvertical circular cylinders, 
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but there is no reason preventing an extension to arbitrary axisymmetric geometries 
also absorbing energy. It will make an interesting comparison to study, with the two 
different methods, an array of, say, five devices absorbing energy. For the present, 
the investigation will use the plane-wave approximation, which results in a simple, 
compact matrix-equation formulation. 

In 5 2 the approximations used in setting up the matrix equation are outlined, and 
then the general problem of an array absorbing energy is solved in $3 3, 4, the former 
being a simple illustration in which the array consists of only two bodies. (This is 
still a very complex problem for the full hydrodynamic interaction.) The added- 
damping and added-mass matrices for the array are then derived in $5. The details 
of the particular device investigated, the submerged cylindrical duct of Simon (1981), 
are given in § 6, and the numerical results are calculated and presented in $ 7. 

Part 2 of this paper, currently in preparation, will examine another technique for 
studying array interactions. This technique avoids the plane-wave approximation 
and allows the energy-extraction mode to be horizontal (for example a 'Lancaster 
flounder' or a submerged sphere constrained to move in sway and surge). The case 
of an infinite array is also studied, and results presented for other axisymmetric 
device geometries. 

2. The approximations involved 
Consider the effect of one wave-energy device (device I), on another device (device 

2), due t o  the former diffracting, and radiating, waves. (Note that the radiation need 
not be present, since the bodies could be fixed, and diffraction could be negligible 
in the 'point absorber' limit. Thus these two effects are independent, and there will 
later be cause for omitting one or other.) Both effects contribute to the total potential 
in two ways; at large distance from device 1 there are extra waves radiating outwards, 
but close to device 1 there is also a local wave field which decays with distance. How- 
ever, only the potential in the vicinity of device 2 matters for the interaction. In  what 
follows, this potential will be approximated by that of aplane wave of an appropriately 
chosen amplitude. There are two distinct approximations involved here; one involves 
the devices being spaced wide enough apart so that the local wave field has no influence, 
and this has been shown to be valid, even at  small spacing, in two dimensions (see 
Srokosz & Evans 1979). There is good reason to believe it is equally applicable in three- 
dimensional problems. The outer approximation models a diverging wave as plane; 
although this is clearly rather crude, it does preserve some characteristics of the wave, 
as the following argument shows. 

Take axes ( r i ,O i , z )  centred on the ith device, with Oi = 0 normal to the line of 
centres (i = 1,2) ,  as in figure I ,  

Then a general wave potential emanating from device 1 can be written 

m 

4 = e-KZ C ( - i )nanH~~)(Krl)  ei?1@1 
n = - w  

(with 9[ . . .e i" ' t ]  understood). This can be expressed in the form 
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Device 1 

FIGURE 1. The incident wave, the devices and the local co-ordinatcs. 

using Graf’s addition theorem (Abramowitz & Stegun 19G4), or 

e-Ka [ ~ , H : ~ ? ~ ( K x )  J ~ ~ ( K ~ ~ )  eimOz( - i ) m ,  (3) 
m - m  n = - w  1 

assuming the order of summation is not important. The term in this potential that is 
independent of 0, is equal to 

If this is to be replaced by a plane wave potential near device 2, moving away from 
device 1 and of amplitude A ,  then (3) would become 

m 

A e-Ka Jm(Kr,) eime2( - i ) m ,  
nL= - w 

which has the same azimuthally independent component as (4) if 

m 

A = a,Hg)(KS), 
n=--00 

which is the amplitude of the wave potential (1) measured at the centre of device 2 .  
As with the single duct of Simon (1981), it is the component (4) which determines the 
exciting force for any axisymmetric body in heave. Also, for diffraction by an axisym- 
metric body this will form the dominant contribution except a t  particular frequencies. 

Thus the plane-wave approximation with the ‘obvious ’ choice of amplitude seems 
justifiable provided the bodies are axisymmetric; with this restriction it is possible 
to pose a very hard multiple-scattering problem in the form of a simple matrix equa- 
tion. The errors introduced by this approximation are considered in the appendix. 

3. The two-body problem 
Before describing the interactions between devices in an array, it is useful to de- 

scribe the coupling between an isolated single device of the type being considered and 
the waves. This coupling can be characterized by three complex constants a, @, P as 
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FIGURE 2. The devices, the incident wave represented by I ,  and I,, 
and the interaction effects represented by c and d. 

follows. Suppose that the device is making vertical motions of amplitude t;, then 
define fi such that the far-field potential takes the form 

wL2K@ e-KzHh2)( Kr), (7) 

B ( K L ) ~  6 I H ~ ~ ) ( K ~ )  1. (8) 

which corresponds to outgoing circular waves of amplitude 

Thus 6 is dimensionless, L being a typical radius of the device. 

then the exciting force is given by 
Conversely, suppose a plane wave of amplitude d is impinging on the fixed device, 

force = npg~2dI2,  (9) 

which defines the dimensionless constant 3. Both b and depend simply on the 
geometry of the device positioned relative to the free surface, and the frequency; as 
seen later they are related to one another. However, if the device is allowed to move 
in response to the forcing (9), and possibly extract energy, then the response amplitude 
will be given by another relation 

= it!$-. (10) 

The dimensionless constant P involves not only the forcing, but also the equation 
of motion (in its frequency-domain form) of the device. 

Now the interactions of devices in an array can be studied; the hydrodynamic 
behaviour of the array depends only on the hydrodynamic properties of individual 
devices, and these properties are embodied in B, 8 and 2. It will be assumed that the 
devices in an array are identical (for the sake of convenience), and so these constants 
apply to each individual device. 

As a simple illustration of the method, consider the case when the array consists 
of only two bodies. There will be no difficulty in extending this to more bodies in 5 4. 
Consider an incident wave of unit amplitude impinging on the two-body array, with 
wave-crests making an anglep with the line of the array, as in figure 1. For convenience 
set the phase of the incident wave to be zero in between the devices; then this wave 
can be expressed as 

(DI = go-1 Il exp ( - Kz + iKr, cos (0, - p)) 
= go-l I, exp ( - Kz + iKr, cos (8, - p)) ,  (1la) 

with the phase fa.ctors I,, I, given by 

IT = I, = exp(4iKXsinP). 

From the results of $ 2  it is possible to model all the interaction between the two 
bodies by incorporating plane waves of complex amplit'udes c, d as shown in figure 2. 
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The plane wave d will be due to all the scattering (of Il and c), and/or radiation, 
from device 1 ,  and c will be due to device 2. Now an axisymmetric device will scatter 
a plane wave 

00 

C (-i)"s,J,(Kr)cos(nB-n~) 
n=O 

in such a way as to add a diffraction potential 

Here the scattering coefficients A ,  are complex constants independent of x. It is this 
potential (12 6) which must be added to an existing wave-field to account for scattering. 
Denoting HF'(KS) by H,, we have 

Here tl, t2 are the amplitudes of device oscillations. The three terms that contribute 
to d are due respectively to the scattering of Il and c off device 1, and the radiation 
resulting from that device oscillating. All these effects give rise to a potential at 
device 2 which is replaced, using the approximations of $2,  by a plane-wave potential 
which has the same amplitude as the true potential has a t  the centre of device 2. 
This amplitude is what is written on the right-hand side of (13a).  The terms related 
to scattering are simply (12 b)  with r = S and appropriate values of 8 and x. 

Now device 1 only 'detects' the other device via the plane wave c, so the response 
of the former is as if it were isolated with incident waves Il and c from the appropriate 
directions. Due to  axisymmetry these directions are irrelevant and cl, E2 are therefore 
determined as though each device were isolated, with incident waves Il + C, I, + d 
respectively. So 

h 

Writing M = fiE(KL)2, A ,  = En( -i)"An+MS,o, (15) 

allows (1  3) and (14) to be combined as 

d = I 1 P )  + cP(3), c = I$@) + dP(3), (16a) 

where 

with Y ' ~ ) = & ~ - P , ~ T + / ~ , T , O  (j= 1,2 ,3 ,4) .  (16c) 

( Y ( ~ )  will be used later.) 
Thus c and d can be determined, and from these the exciting forces which are pro- 

portional to Il+c and 12+d,  which follows from the argument preceding (14). It is 
then clear that the energy absorptions of the two devices in the array have been 
multiplied (due to the interaction) by factors 

14+c12, I12+d12 (17) 
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n - 2  n - 1  n n t  1 n + 2  

FIGURE 3. The three plane waves I,, c, and d, which scatter off, 
and force the motions of, the nth device. 

respectively. This enables the energy absorption for the (two-body) array to be 
evaluated as 

2qp1, (18) 

q = *{ l I1+C12+ IIz+d12). (19) 

where PI is the energy absorption of a single device in isolation, and ij is an ‘averaged 
interaction factor ’: 

The devices are aiding one another owing to their mutual positioning if q > 1, but 
are hindering each other if q < 1 .  It is expected that there will be certain combinations 
of spacing and angle of incidence €or which there is a favourable interaction, and 
other combinations where there will be (unavoidable) reduction in performance. 

Notice that this method also gives the true energy absorption of a ‘point-absorber’ 
array, simply by setting A ,  = 0 for all n; conversely the problem of diffraction off an 
array of fixed bodies is achieved by setting P = 0, and this proves useful for evaluating 
optimal power absorption later. Further notice that the extension to a general array 
of N bodies is straightforward, achieved simply by introducing more pairs of plane 
waves (c ,  d ) ,  with a total of N(N - 1) quantities to be determined. For a linear array, 
however, this reduces to 2 ( N -  1) owing to some of these introduced waves amal- 
gamating. 

4. The N-body, linear array 
Consider the case of uniform spacing. P u t  the new phase factors 

I, = exp{-iKS(n-*(N+l))sinP} (1  < n < N), (20) 

so that the phase is again set to zero in the centre of the array, as in (11). I n  this 
case the plane wave of complex amplitude c ,  is due to all devices numbered higher 
than n, and similarly dn is the complex amplitude of the plane wave due to all lower 
numbered devices, as shown in figure 3. Thus c, is a sum of the diffraction radiation 
effects from other devices. There is an interesting point here, for although a contri- 
bution to c, from device n + 2, say, will be modised by device n + 1, this modification 
will be properly accounted for in the sum as part of the contribution from device 
n + 1. The matrix equation is thus 

Here 
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Pgh is due to waves that are travelling along the array scattering ‘ahead’, whereas 
P$‘A is due to scattering ‘behind’ the device; the angles y(j) are as in ( 1  6).  

As with (1  l ) ,  it is possible to explain (21) as follows. Every Im, c, or d,, scattering off 
device m will contribute to the total potential a t  device n (n + m). The contributions 
from all devices are replaced by plane-wave potentials of the correct amplitudes, with 
the direction of propagation chosen according to the sign of n - m. These plane-wave 
potentials add owing to linearity, to form c, and d,. Using (15) it is again possible to  
include the effects of devices that are radiating owing to wave-forces on them. 

I n  practice the infinite sum (22)  can be truncated after a few terms because of the 
rapid decay of the scattering coefficients A,, so each matrix coefficient PgL requires 
few Hankel-function evaluations. For an array with non-uniform spacing there are 
2N(N - 1)  values P${L, but this reduces to 4(N - 1)  when the spacings are equal. (In 
fact, P# need not be computed because of (21 c ) . )  

One very convenient feature of this matrix form of the scattering problem, is that  
the matrix that multiplies the 2(N- 1) unknowns c, and dn involves P$ik and Pi$& 
only, and is thus independent of p, the angle of incidence. This means that, for a given 
value of KS, only one call to  a standard NAG computer routine enables the matrix 
equation to  be inverted for many different ‘right-hand sides’, corresponding to many 
different values of p. This significantly reduces the computation time, although at  the 
cost of increased storage. 

After inversion, the averaged interaction factor is given by 

where Pabs is the energy absorbed by the array. 
The numerical result,s obtained later show that ?j can indeed be significantly different 

from unity, and can be very sensitive to changes of wavelength and angle of incidence 
when N is large. 

5. The diffraction and radiation problems 

By controlling the amplitudes and relative phases of the device responses, the 
energy absorption of the array can be varied. There will be a unique maximum value 
of the energy it is possible to  extract with a given array; this optimal absorption will 
occur only if the phases are in the correct relationship, which is determined by all the 
many parameters involved. However it is shown in Evans (1980) that, in order to 
evaluate the optimal energy extraction of an array a t  a given angle of incidence, it is 
sufficient to know 

(a) the exciting forces Fn (n = 1, . . . , N )  on the bodies in the array when they are 
held fixed in waves a t  the given angle, and 

( b )  the added-damping matrix. The disturbance caused by the motion ii of the 
j t h  body will produce a contribution to  the force on the ith body. This contribution 

arbitrarily splitting i t  into components in phase with velocity and acceleration respec- 
tively. The real symmetric matrices B and R are the added-damping and added-mass 
matrices, but the latter will not contribute when the time-averaged power absorption 
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is sought. Note that the exciting forces, added-damping and added-mass coefficients 
are all frequency-dependent. 

Although the quantities Bii are properties of the radiation problem, where one body 
is forced to oscillate with all other bodies held fixed, the reciprocity between radiation 
and diffraction allows the matrix elements to be computed from the exciting forces 
F, known a t  all angles of incidence. (In practice, using the symmetry of the configura- 
tion as in (26) and (27), this meant about 50 angles in [O, $771.) The reciprocity, which 
is widely applicable in wave problems, is proved for the present case in Srokosz 
( 1 9 7 9 ~ ) .  It is derived by applications of Green's theorem and the method of stationary 
phase. 

5.1. The diffraction problem 

The exciting forces F, are obtained by solving the matrix equation for fixed bodies 
(P = 0). Writing 

yn(P) = (In+Cn +dn)F=, gives F ~ ( P )  = npgL2Byn(P). (26) 

The complex quantity y,(P) represents the amount by which the exciting force F, 
has been augmented owing to array effects. The reciprocity between radiation and 
diffraction allows the dimensionless form of the damping matrix to be evaluated as 

2R 

0 
~ n m  = (2771-1 lgl2/ yn(o)y$(o)do 

because yn(n-0) = ?,(a) and yn(2n-O) = YN+l-n(O)* (27) 

The last relation is a consequence of the symmetry of the array about its midpoint 
due to  uniform spacing, and the choice (20). Note that 

y n ( 2 n - o )  = Y Z ( O )  (28) 

is no longer true when scattering is included. This is in contrast, therefore, to the point- 
absorber case, and in particular to the discussion around equation (4.12) of Evans 
(1980). 

Note that 1812 is simply the damping coefficient for a single device, as seen by 
considering (26) with N = 1, in which case y l ( 0 )  = 1 for all 6.  

The q-factor (which measure the enhancement of performance due to interactions) 
and the optimal power are then given by 

Equations corresponding to (26) and (29) were first derived by Evans (1980)) but 
calculations from it were performed for the point absorber case only. Notice that 
qopt is a function of N ,  P, KS,  and of the scattering coefficients An. It does not depend 
on any other property of the single-body problem, and this includes the energy- 
extraction process. However, the displacements & necessary to achieve this optimum 
extraction depend on 8, and the remaining properties of the single-body problem must 
be such that these optimum displacements are achieved. 
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By (23) and (29), it  is clear that 

The numerical values calculated later for an array of identical devices of a specific 
type suggest that the true energy absorption will be significantly less than optimum 
(since the ratio (30) is typically 0.6-0-8) when the number of devices in the array is 
large. There is thus scope for further optimisation, but it is by no means clear how 
this is to be achieved, bearing in mind that the devices in practical configurations 
would be identical. (The optimum energy capture for aJinite array requires different 
damping and spring/inertia constants for each device. This is shown in Srokosz 
(1979b, p. 35). This corresponds to different values of P for each device, but this is 
not at  variance with the present method, since 3 does not affect the values of ~ ~ ( 0 )  
or Bij . )  

5.2. The radiation problem 

The more straightforward way to derive the added-damping matrix is by con- 
sidering the radiation problems where one body oscillates in the presence of N - 1 fixed 
bodies; this way also yields the added-mass matrix. There are N such problems, but 
symmetry allows the number to be reduced to 8N ( N  even), or *(A7 + 1) ( N  odd). It 
is useful to derive two relations between quantities involved in the single-body 
problem before writing down the matrix equation which represents the radiation 
problem. 

Let & and cPS be respectively the radiation and scattering potentials for an isolated 
(axisymmetric) body; also take 9 to be the closed surface formed by the wetted surface 
of the body, the free-surface, a cylindrical closure of large radius, and the fluid bottom 
a t  x = 00. Green’s theorem, applied inside 9, with cPR and q& gives 

f, = gi7iB; (31 a)  

a = (2A,+ l)f,*, (31b) 

also, using this theorem with 45,- & and &, as in Davis (1976), gives 

Thus - 

this definition of the phase angle a is the same as is used in equation (48) of 
Simon (1981) for the particular case of the cylindrical duct, with A ,  written there 
as A .  

The matrix equation for the radiation problem can now be written as (21) and (22) 
with P = 0 (i.e. 2, = A,)  and with right-hand sides 

for c,. 
0 

Hp(KSln  - 41) (n < q )  
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Here device q is oscillating, with amplitude tq = (K2L2B)-l; denote the solution by 
c:), dg)  (1 < n < N ) .  Then, by definition of the added-mass and damping matrices 
with the appropriate non-dimensionalization, we have 

npgL2B(cg) + ag) = - (~wB,, - W2.Pp,) 6, 
= - w2(iBP, - MPq) &7PL4pK$ 
= - (iBpq- Mp,) &n2L2pg/8. (33) 

Using (31) now gives 

Adding the force on the qth body due to its own oscillation in isolation gives 

D;1 B,, = S,, + g{e-ZiE(cg) + dg))), (35a) 

(35b)  Mpp = &W,, + DrJJ{e-2ia(c$) +a$))]. 
In these relations D,  = is the added-damping coefficient, and M(l)  the added- 

mass coefficient, for an isolated device; S,, is the Kronecker delta. 
For the particular device geometry considered in this paper it was found that 

calculations of Bn, using (26) and (35a) were in close agreement. However, certain 
shortcomings were observed, possibly due to inaccuracies introduced by the plane- 
wave approximation. For the integral (26) was not necessarily real numericatzy, and 
the matrices given by (35) were not necessarily symmetric. It was felt that the results 
were still meaningful despite this, since the imaginary part of (26), the antisymmetric 
part of (35a), and the disagreement between the two methods were all typically less 
than and never more than 3 yo in any of the specific cases computed. 

6. An application to a particular device 
In this section, the foregoing method is applied to an array of cylindrical resonant 

ducts, using the results detailed in Simon (1981). We may note that another simple 
geometry available for study is that of the submerged sphere, and Srokosz (1 979 b )  
presents comprehensive results for the sway and heave added-masses and dampings 
of such a device. Once the scattering coefficients for the sphere have been derived, 
(by a straightforward extension of the analysis of that paper), the matrix method can 
be applied to an array of spheres constrained to move in heave only. This work is under 
progress, and will appear in part 2. 

The scattering coefficients for the cylindrical duct were computed for n = 1,  .. ., 5, 
as well as for n = 0 which is given by equations (48a-c) of Simon (1981). This is 
achieved by replacing the quantity 5 in (37), the function 8 ( x ) ,  and the function $ ( z )  
in (33) of that paper by 

ITn (x) = - 2xIA(x) KA(x) > 0, (37) 

(38) 

It was found that typically ASIAo < lo-*, and so the infinite sum (22) for P$in was 

- 
l/lTL(z) = ( 2 2  - 1)-4 + y 2-1 + pz-2 respectively. 

replaced by X:=o.. . . 
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For the duct, the flow Q, takes the place of the amplitude & of device oscillations. 
The quantity M of ( 1  3) is given by 

/ 

,(I + 2Ao), (39 b 1 K i  e-27 = Dr e - 2 i ~  = D 

in the notation of Simon (1981). All the computations were performed with cr = h/a = 
r/,u = 0.5; and where 111 was used in the study of the energy absorption of an uncon- 
strained array, Z / a  and D, were determined by conditions (97) of that paper with 
p, = 1. Note that a distinction must be understood between the ‘zero-scattering’ 
limit and the ‘point-absorber ’ limit. The latter is the limit asp = Ka --f 0, which gives 
A ,  -+ 0 for all n, D, -+ 1, K ,  -+ 1 and % -+ %, > 0. The former limit, which is interesting 
because it separates scattering from other effects of finite size, is achieved by setting 
A ,  = 0 for all n, with all other properties of the device fixed, including a. Thus (33) 
was used first to  evaluate a,  and then A ,  set to zero, when considering this limit. 

At this point it is worth observing that, if the geometry of the duct has been opti- 
mised, M remains close to - ge-2ia over a broad band around the tuning frequency po. 
Hence A. = A ,  + 111 remains close to - 9 over this band, whereas this would be the same 
as thevalue of Min the ‘zero-scattering ’limit. It is possible that this is important in un- 
constrained arrays, since A, constitutes the dominant effect for practical device sizes. 

7. Results and discussion 
Figure 4(a )  shows contours of the averaged interaction factor a, for an array of 

five devices, plotted against dimensionless spacing and angle of incidence. Each device 
has a diameter of one third of the spacing S. Of note are the very favourable inter- 
actions for p = 0 and KS = 4, and the unfavourable interaction ,!3 = 0,  KS = 7 and 
p = &T, K S  z 3. For the sake of comparison the zero scattering limit is also shown, in 
figure 4 ( b ) .  It is clear that the introduction of scattering tends to ‘shift’ the pattern 
of response towards higher frequencies, as well as modifying this pattern. Thus it does 
seem that scattering is important in arrays. 

for 9 devices. Again a/S = 4. It is clear that 
increasing the number of devices accentuates the favourable and unfavourable inter- 
actions, and makes the transition between the two sharper. Investigation of these 
contours for a large number of devices shows that these transition lines are given by 
KS( 1 sin/3)/27r = an integer; the case of an infinite array links these lines to the 
divergence of an infinite series, or alternatively a contour integral. This will be shown 
in part 2 of this work, where computations are presented for the infinite-array case. 

Figure 5 shows how the energy absorption is distributed throughout an array of 
nine devices, both with and without scattering, in beam and head seas. The overall 
form of this distribution is unchanged by including scattering, but the average level 
is modified. The figure shows also that the term ‘attenuator’ is strangely apt for head 
seas, with the rear devices contributing virtually no power. This suggests that it is a 
mistake to design attenuator devices with a large number of active elements, as noted 
by other authors, including Count & Jefferys (1980). 

Before moving on to consider the optimal energy absorption of the array, it is 

Figure 4(c) shows the contours of 
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FIGURE 4. Contours of the averaged interaction factor ij plotted against dimensionless spacing 
KS and angle of incidence p. Contour levels are marked at intervals of 0.3. The results are for 
the submerged cylindrical duct of Simon (1981), with a diameter of one third the spacing. ( a )  
An array of 5 devices, including scattering. ( b )  An array of 5 devices, but without scattering 
effects, ( c )  An array of 9 devices, including scattering. 

interesting to  look first at  the added-damping matrix coefficients computed using (26). 
Figure 6 (a )  shows the ratio of the principal damping coefficient B,, (computed using 
the present method) to lBl2 = D,, the damping coefficient for a single device. This 
ratio is compared to the constant value of unity predicted from the point-absorber 
theory. Results here are for an array of two devices, plotted against the dimensionless 
spacing KS. Two curves are shown, corresponding to different device radii. Clearly 
the Iarger devices (with greater scattering effect) alter the damping coefficient more. 
For comparison, figure 6 ( b )  shows results of Count & Jefferys (1980) obtained using a 
finite-element numericaI technique for cylinders, with hemispherical bases, which 
intersect the free surface. The diameter of their device is roughly that of the smaller 
device of figure 6 (a).  It is apparent that the deviations from unity are much greater 
in figure 6 ( b ) ,  and this is possibly due to the much greater scattering of a surface- 
piercing device. 

Figure 7 ( a )  shows the ratio of the off-diagonal damping coefficient BI2 to D,, plotted 
against spacing. The point-absorber theory of Evans (1 980) would give this value as 
J,(KS), and the results from the present method display a ‘shift’ towards smaller 
spacing; this shift is more pronounced for the larger device. Figure 7 ( b )  shows the 
equivalent result from Count & Jefferys (1980), with the shift being towards larger 
spacing. This apparent contradiction between the two methods is another result of 
the fact that their devices intersect the free surface, since there is a phase lead (a < 0) 
for such a device. This can be explained as follows. 

When the number of devices is small the major contribution to an off-diagonal 
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FIGURE 5 .  Histograms of the individual interaction factors for the devices for an array of 9 
devices with a dimensionless spacing KS = 4.5. Upper: head seas. Lower: beam seas. In  each 
case the left-hand plots include scattering effects, the right-hand ones do not. Dashed lines: 
the average interaction factor for the array. 

damping (or mass) coefficient is from a ‘direct path’ through the fluid; that is, waves 
radiated by one device affecting another without any scattering. Other paths through 
the fluid (for example scattering off a third device on the way from one device to the 
other) give a weaker contribution; it is only when there are more devices that these 
weaker contributions add up significantly. Thus the shift observed must be due to the 
finite size of the devices, not due to scattering. So it must be due to the phase lag (or 
lead) of the wave radiated by the first device, and also the phase lag (or lead) of the 
exciting force on the second device. Since the devices are identical, so are these phase 
effects, and this is the reason for the ecZiu  appearing in (35). Hence a good approxima- 
tion for a few devices (and a first approximation in all cases) is to ignore scattering, in 
which case 

and so 

(40a) 

(40b) 

C$’+d$)  = H&2)(KSIp-qI) (p * a) ,  
Bpp + iMpp = D, e-2i=H&’)(KS Ip - q I )  

% D, H&2)(2a + KS Ip - q I). 
This explains the difference in direction of the shift, since a > 0 is general for sub- 

merged devices, and a < 0 for floating ones (see e.g. Lighthill 1979). 
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FIGURE 6. The ratio of the principal damping coefficient B,, for two devices to  the coefficient 
D, for a single device, plotted against dimensionless spacing K S :  (a) computed using the present 
method, for two dimensionless duct radii Ka = 0.5, 0 .75;  ( b )  results of Count & Jcfferys (1980), 
using a numerical technique, for axisymmetric floating buoys. The point -absorber theory of 
Evans (1980) gives B,,/D, = 1. 

This phase effect also explains partially the shift observed in the contours of 4, 
although the argument is not as clear-cut. Bearing in mind the last paragraph of 0 6, 
neglecting &(n + 0), and concentrating on nearest-neighbour effects suggests that 

N - r p v  (KX) includingscattering 
Pf:j)lL*l = Lz0Hp(KS) 

z - $Hb2)(KX + 2a) no scattering, 

which in turn suggests a shift of 2a (z 0-5-1.0) towards higher values of KAY, as 
observed. 

Figures 8 (a, b )  show diagonal and off-diagonal damping coefficients for 3, 5 and 9 
devices. The matrix elements shown are near the centre of each array; that is BicAq 
and B,qj+, where N = $(A7 + 1). Note the large deviations from the theory of Evans 

h 
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FIGURE 7 .  The ratio of the cross-coupling damping coefficient B,, for two devices to the co- 
efficient D, for a single device, plotted against dimensionless spacing K S :  (a)  computed using 
the present method, for two dimensionless duct radii. Ka = 0.5, 0.75; ( b )  results of Count & 
Jefferys (1980), using a numerical technique, for axisyrnmetric floating buoys. The point- 
absorber theory of Evans (1980) gives B,,/D, = J,(KS). 

(1980) that occur at certain isolated frequencies when the number of devices is large. 
It is impossible to display all the important quantities, so the graphs displayed should 
be taken as representative of results for general values. There is in principle no limit 
to the number of devices in an array which this method can solve, and the limit 
imposed by computer time and storage is about 25 devices. However, the graphs 
become increasingly intricate, with a lot of fine structure, as the number of devices 
increases, and this does not add to one’s understanding. So graphs shown will be for 
moderate numbers of devices, and, for comparison with Thomas & Evans (1981), 
N = 5 is of special interest. 

Figures 9 (a, b )  show diagonal and off-diagonal added-mass coefficients for 2 and 5 
devices, compared with the results for the limit of point absorbers. The mat,rix co- 
efficients have been normalized to match the added length i of Simon (1981, figure 1 I) ,  
with (T = 0.5. Notice once more that the principal effect is a shift towards lower 
frequency, as explained before (40). 

Figures 10(a,  b )  show the modulus and phase of the factor r,(P) by which the 
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FIGURE 8. Diagonal and off-diagonal damping-coefficient ratios B,,/D, for 3, 5 and 9 devices, 
plotted against dimensionless spacing KS. Each device is a duct of dimensionless radius &KS. 
(a )  The central coefficient B,,/D,, m $ ( N +  1) .  (b )  The off-diagonal coefficient B,sm+l/Dr, 
m = i ( N + l ) .  

exciting force is augmented; this is for an array of 5 devices in normally incident waves 
(beam seas, ,4 = 0). Three curves are given for the first, second and third devices, and 
symmetry shows that the outer pair must be subject to the same force; similarly, the 
forces on the second and fourth devices must be the same. Notice that the force can 
be nearly twice as large as the value given by point-absorber theory, which is just the 
value for an isolated device; that  the devices are subject to virtually the same forces 
in a band around KS = 6; that a t  KS = 2n the phase of these forces is a minimum; 
and a t  the same value the forces are virtually unchanged in magnitude. 

Figures I1 (a ,  b )  show the corresponding results for waves incident along the 
direction of the array (head seas or p = an). The three curves given are for the first, 
third and fift'h devices in an array of five; no longer are the outer pair subject to the 
same forces when scattering is included, except in beam seas. Of note here are interest- 
ing effects which occur when the spacing is a multiple of half a wavelength, but more 
important is the force on the rear (fifth) device. This device feels an excit,ing force 
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FIGURE 9. Diagonal and off-diagonal added:mass coefficients Mi$, normalized so that the 
diagonal elements reduce to the added length E of Simon (1981) as the spacing-to-duct-diameter 
ratio becomes large. Results are shown for 2 and 5 devices, and the point-absorber limit, plotted 
against the dimensionless spacing KS. Each device has a duct radius of $8: (a)  MI, compared 
with the point-absorber value E ;  ( b )  MI% compared with -+nKaD,Y,(KS). 

which is always greater than the force on an isolated device, and this force always lags 
behind the wave. This last result has been thought to account for the ‘wave-shortening ’ 
effect observed as waves pass along an attenuator-type device such as the Lancaster 
flexible bag (D. P. Hurdle, private communication). 

The foregoing graphs show that the damping matrix and the exciting force are both 
significantly modified when scattering is included. It would therefore be expected that 
the optimal q-factor, defined by (29)) would also be significantly different from the 
point-absorber value given by Evans (1 980). Figure 12 shows the unexpected result 
that there is remarkable agreement between the values with and without scattering. 
This conclusion is also reached by Count & Jefferys (1980) in their numerical study. 
This close agreement is as yet almost wholly unexplained. Nor is it yet known why 
Greenhow (1980, figure 18) finds that the q-factor is changed (shifted to higher fre- 
quency) for an array of two heaving spheres. It is hoped that further work on arrays 
of wave-energy devices, studying different geometries a.nd using different methods, 
will explain this. 
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FIGURE 10. Modulus (a) and phase ( 6 )  of the factor m ( P )  which represents the augmentation of 
exciting forces due to scattering in the array. The point-absorber theory of Evans (1980) would 
give this factor to be identically unity. Curves are for an array of five devices, in beam seas 
(/I = 0). Each device is of dimensionless radius t K S ,  where KS is the dimensionless spacing. 
The numbering denotes the appropriate device. 

Finally, figures 13(u, b )  show the optimal amplitudes of the device responses. 
(These quantities are actually the ratios between the displacement of the air/water 
interface inside the ducts to the wave height (see Simon 1981).) For compa.rison the 
optimal response of an isolated device is shown. The wave height has unit amplitude 
on this scale, and so it is seen that the device responses are not too large for linear 
theory to be valid. The exception to this is for KS < 3 (not shown), where the optimal 
responses become much larger, just as does the optimal response of a single device. 
Thus it is concluded that the enormous amplitudes displayed in Thomas & Evans 
(1981) are the result of the choice of device, rather than the array interactions; this 
can be seen by evaluating the optimal amplitude of a single heaving semi-immersed 
sphere. In  their notation this is given by ( 2 7 r ~ ~ u ~  Q)-l, which is about 3.2 when KU = 0-4. 
It would seem that the ratio of the optimal amplitude of a device in an array to its 
optimal amplit,ude in isolation is typically between 0.5 and 2 (beam seas), or 0.5 and 1 
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FIGURE 11. As for figure 10, for head seas (/I = in). Note that the phase 

of yn(+n) is plotted relative to  the incident wave. 

(head seas), whether or not scattering is included. This simply re-emphasizes the need 
t o  optimize the properties of the individual devices. 

A s  a summary of the results of this paper it may be said that important effects arise 
in arrays due to the relative phases of exciting forces and displacements, rather than 
their magnitudes, and so scattering and finite size can each act to produce substantial 
frequency shifts, through alteration of these phases. 

8. Conclusion 
A matrix method has been described that models the multiple-scattering problem 

in an array of wave-energy absorbers. It has been shown that scattering is important 
in the true (non-optimised) energy absorption of an array; that is, where the phases 
and amplitudes of the device responses are not controlled. The main effect of scattering 
is to shift the frequency response of the array. Similarly it is shown that the added- 
damping and added -mass matrices are substantially altered, with the main effect, 
when there are few devices, being a shift in the frequency response. This change from 
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FIGURE 12. The optimal q-factor, for an array of five devices, plotted against dimensionless 
spacing KS. Each device has a radius of one quarter of the spacing. The gain factor goppt repre- 
sents the amount by which the array, under optimal conditions, improves upon the optimal 
performance of N isolated devices. Curves: the point-absorber theory of Evans (1980). Present 
method including scattering: + , /3 = 0 ;  A, /3 = tn. 

point-absorber theory is principally due to phase effects of the finite size of devices, 
rather than their scattering effect. It is also shown that the exciting forces on array 
elements are significantly modified in both phase and amplitude owing to the inclusion 
of scattering. Despite this, the maximum possible energy absorption of a controlled 
array is virtually unaffected by scattering among the devices. 

Further work will investigate another matrix technique for the study of arrays, 
one which allows the study of horizontal modes of energy extraction. The case of an 
infinite array will also be studied, and results will be presented for other device 
geometries including the sphere. 

I would like to thank Sir James Lighthill for all the help and encouragement he has 
given me during this work, and also Dr D. V. Evans and Mr B. M. Count €or their 
advice and comments, and the Science Research Council for the financial support that 
made this research possible. This work was carried out while I was a research student 
at D.A.M.T.P., Cambridge. 

Appendix. Errors due to the plane-wave approximation 
Thus the replacement of the diverging-wave potential (1) by the plane-wave 

potential (5) results in errors that are in some sense small, and an attempt will now be 
made to show the order of the approximation involved, based on the restriction to 
axisymmetric bodies making vertical motions. With this restriction, the exciting 
force on device 2, due to the wave (1) from device 1 ,  is given exactly by the exciting 
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FIGURE 13. The device response needed to give the optimal q-factor of figure 12, plotted against 
dimensionless spacing K S :  (a) beam seas ( p  = 0 ) ,  showing the responses of the first, second and 
third devices; ( b )  head seas (p  = in), showing the responses of the first, third and fifth devices. 
In each case the dashed line shows the optimal response amplitude of an isolated device, and the 
' + ' points are the optimal amplitude of the third device under the point-absorber approximation. 

force due to wave ( 5 )  with amplitude given by (6). Wave ( 5 )  does however scatter 
differently from wave (I) ,  and so the back effect on device 1 will be changed due to 
the approximation. The difference can be calculated as follows. 

The diffraction potential due to wave (l),  rewritten as (3) ,  scattering off device 2 

m n  
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The scattering coefficients A ,  are defined for the particular device in the same manner 
as ( 1 2 b ) ;  H,,, stands for H g ) ( K S ) ,  and Graf’s addition theorem has again been used, 
to  re-express the potential in terms of ( r l ,  8,) x )  co-ordinates. The exciting force due 
to  the back effect is proportional to the 1 = 0 term, which is thus 

Conversely, if the plane-wave approximation is used, i t  is the wave ( 5 )  that scatters 
off device 2 to yield a back effect, and so the corresponding expressions are 

e - K z C [ ( X ; n H n ) X ( - i ) m A , ~ , ]  ( - i ) zq(Krl )e iLoi ,  (A 3) 
I n  m 

C X an A ,  Hn I&( + i),. 
The difference between (A 2 )  and (A 4), which represents the error in the exciting 

force due to  the approximation, is 

Notice that this is O((KS)--2), whereas each of (A 2 )  and (A 4) is O((KS)-l);  further 
notice that (A 5 )  is identically zero if A ,  = 0 for m + 0. The latter comment shows 
that the difference will be small compared with (A 2 )  if A ,  is sufficiently large in com- 
parison to the other scattering coefficients An, and the former comment shows that 
the error is of the order of the fourth scattering. (If the analogy of the wave with a 
particle is allowed, then the error is introduced when the particle, coming from device 
1,  has bounced off device 2 ,  device 1 and device 2 again, losing some ‘momentum’ a t  
each bounce, and then goes back to effect device 1 once more.) Work by Ohkusu 
(1973)) using an iterative technique, suggests that  higher-order scattering is relatively 
unimportant in the total potential, so it is felt that overall the plane-wave approxi- 
mation will give reasonable accuracy for sensible parameter values, with the resulting 
huge simplification in the multiple scattering problem. Specifically, the work will 
involve parameter ranges for wavenumber K ,  interspacing S and device size L such 
that KS 2 O(27r) and SIL  = O(27r), so that K L  2 0(1) and scattering is important. 
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